Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutr Neurosci ; 25(11): 2408-2420, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34490827

RESUMO

Objectives: We have previously shown that the combined consumption of fat and a sucrose solution induces overeating, and there is evidence indicating that sucrose drinking directly stimulates fat intake. One neurochemical pathway by which sucrose may enhance fat intake is through the release of endogenous opioids in the nucleus accumbens (NAC).Methods: To test this hypothesis, we provided rats with a free-choice high-fat diet for two weeks. During the second week, rats had access to an additional bottle of water or a 30% sucrose solution for five minutes per day. After these two weeks, we infused vehicle or the µ-opioid receptor agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) into the NAC 30 min after their daily access to the additional bottle of water or the sucrose solution.Results: Sucrose drinking had two effects, (1) it stimulated fat intake in the absence of DAMGO infusion, (2) it diminished sensitivity to DAMGO, as it prevented the rapid increase in fat intake typically seen upon DAMGO infusion in the nucleus accumbens. In a second experiment, we confirmed that these results are not due to the ingested calories of the sucrose solution. Lastly, we investigated which brain areas are involved in the observed effects on fat intake by assessing c-Fos-expression in brain areas previously linked to DAMGO's effects on food intake. Both intra-NAC DAMGO infusion and sucrose consumption in the absence of DAMGO infusion had no effect on c-Fos-expression in orexin neurons and the central amygdala but increased c-Fos-expression in the NAC as well as the basolateral amygdala.Discussion: In conclusion, we confirm that sucrose drinking stimulates fat intake, likely through the release of endogenous opioids.


Assuntos
Núcleo Accumbens , Receptores Opioides , Animais , Ratos , Encéfalo/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/metabolismo , Núcleo Accumbens/metabolismo , Ratos Sprague-Dawley , Receptores Opioides/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Sacarose , Água , Proteínas Proto-Oncogênicas c-fos
2.
Physiol Behav ; 222: 112936, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32417644

RESUMO

The consumption of saturated fat and sucrose can have synergistic effects on the brain that do not occur when either nutrient is consumed by itself. In this study we hypothesize that saturated fat intake modulates glucose handling in the hypothalamus and nucleus accumbens, both brain areas highly involved in the control of food intake. To study this, male Wistar rats were given a free-choice high fat diet (fcHFD) or a control diet for two weeks. During the last seven days rats were given a daily bolus of either a 30% sucrose solution or water. Rats were sacrificed on day eight, 30 minutes after the onset of drinking. mRNA and protein levels of genes involved in glucose handling were assessed in the hypothalamus and nucleus accumbens. We found increased Glut3 and Glut4 mRNA in the hypothalamus of fcHFD-fed rats without an additional effect of the sucrose bolus. In the nucleus accumbens, the sucrose bolus increased Glut3 mRNA and decreased Glut4 mRNA independent of prior diet exposure. The ATP-sensitive potassium channel subunit Kir6.1 in the nucleus accumbens tended to be affected by the synergistic effects of a fcHFD and a sucrose bolus. These data suggest that acute glucose handling in the hypothalamus and nucleus accumbens may be affected by prior high fat exposure.


Assuntos
Dieta Hiperlipídica , Núcleo Accumbens , Animais , Dieta Hiperlipídica/efeitos adversos , Glucose , Hipotálamo , Masculino , Ratos , Ratos Wistar , Sacarose
3.
Neuroscience ; 447: 28-40, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31887359

RESUMO

The preclinical multicomponent free-choice high-fat high-sucrose (fcHFHS) diet has strong validity to model diet-induced obesity (DIO) and associated maladaptive molecular changes in the central nervous system. fcHFHS-induced obese rats demonstrate increased sensitivity to intracerebroventricular infusion of the orexigenic Neuropeptide Y (NPY). The brain region-specific effects of NPY signaling on fcHFHS diet component selection are not completely understood. For example, fcHFHS-fed rats have increased intake of chow and fat following intracerebroventricular NPY infusion, whereas NPY administration in the nucleus accumbens, a key hub of the reward circuitry, specifically increases fat intake. Here, we investigated whether NPY infusion in the lateral hypothalamic area (LHA), which is crucially involved in the regulation of intake, regulates fcHFHS component selection, and if LHA NPY receptor subtypes 1 or 5 (NPYR1/5) are involved. Male Wistar rats were fed a chow or fcHFHS diet for at least seven days, and received intra-LHA vehicle or NPY infusions in a cross-over design. Diet component intake was measured two hours later. Separate experimental designs were used to test the efficacy of NPY1R- or NPY5R antagonism to prevent the orexigenic effects of intra-LHA NPY. Intra-LHA NPY increased caloric intake in chow- and fcHFHS-fed rats. This effect was mediated specifically by chow intake in fcHFHS-fed rats. The orexigenic effects of intra-LHA NPY were prevented by NPY1R and NPY5R antagonism in chow-fed rats, but only by NPY5R antagonism in fcHFHS-fed rats. Thus, NPY signaling has brain region-specific effects on fcHFHS component selection and LHA NPYR sensitivity is dysregulated during consumption of a fcHFHS diet.


Assuntos
Região Hipotalâmica Lateral , Neuropeptídeo Y , Animais , Dieta , Gorduras na Dieta , Região Hipotalâmica Lateral/metabolismo , Hipotálamo/metabolismo , Masculino , Neuropeptídeo Y/metabolismo , Obesidade , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...